M.Sc. (1')

Printed Pages: 4

4473

Chem(P)-III

https://www.pdusuonline.com

M.Sc. (Previous) Examination, 2019 CHEMISTRY

Paper - III(CH-403)

(Physical Chemistry)

Time: 3 Hours

Maximum Marks: 100

Note: (i) No supplementary answer-book will be given to any candidate. Hence the candidates should write the answer precisely in the main answer-book only.

- (ii) All the parts of one question should be answered at one place in the answer book. One complete question should not be answered at different places in the answer book.
- (iii) Attempt <u>five questions</u> in all, selecting at least one question from each Unit. All questions carry equal marks.

1.	Discuss perturbation theory. Derive an expression of			
	perturbation theory to applying on Helium atom.			
	10+10			

- Write short notes on the following.
 - (i) Hamiltonian operator
 - (ii) Pauli's exclusion principle /
 - (iii) Extended Huckel theory ~
 - (iv) Postulates of quantum mechanics

5×4

https://www.pdusuonline.com

Unit-'II'

- Explain fugacity. Derive an expression for determination of fugacity of a real gas. Also write any two applications of fugacity.
- Write short notes on the following:
 - (i) Second order phase transitions
 - (ii) Lagrange's method of undetermined multipliers
 - (iii) Vibrational partition function
 - (iv) Onsagar's reciprocity relations

5×4

UnH-'III'

5	(a) Derive an rate expression for H ₂ a	nd Br ₂
	photochemical reaction.	15
	(b) Discuss kinetic and thermodynamic co	ntrol of
	· reaction.	5
6 .	Write short notes on any two of the following	•
	(i) Primary kinetic salt effect	
	(ii) Kinetics of pyrolysis of acetaldehyde	
	(iii) Lindemann theory	10+10
	Unit-'IV'	
7	Write short notes on the following:	
	(i) Kelvin equation	
	(ii) Electro-Kinetic phenomenon	
	(iii) Phase separation model of micellization	n
	(iv) Reverse micelles	5×4
8	(a) Write the kinetics of polymerisation.	10
	(b) Discuss osmometry and viscometry m	ethod for
	molecular mass determination.	10

https://www.pdusuonline.com

Unit-'V'

9.	Write short	notes on	any two	of the	following
----	-------------	----------	---------	--------	-----------

10+10

10

https://www.pdusuonline.com

- (i) Stern Model of electrified interface
- (ii) Effect of light at semiconductor solution interface
- (iii) Debye Huckel Jerum Mode.
- (a) Derive an expression for Butler-Volmer equation.

(b) Discuss instrumentation and theory o polarography

---x---