B.C.A. (Pt. 11)

232

Disc. Math.

B.C.A. (PART II) EXAMINATION - 2018 (FACULTY OF SCIENCE) (Three - Year Scheme of 10+2+3 Pattern)

Paper 232

DISCRETE MATREMATICS

Time allowed: Three Hours Maximum Marks: 100

Part I. (Very short answer) consists of 10 questions of 2 marks each. Maximum limit for each question is up to 40 words.

Part II: (Short answer) consists of 5 questions of 4 marks each. Maximum limit for each question is up to 80 words.

Part III 1 (Long answer) consists of 5 questions of 12 marks each with internal choice.

PART - I

- 1. Very Short Answer Type Questions
 - (a) Convert the decimal number (156), anto binary form.....
 - (b) Compute the sum (11011);+ (10011); into decimal form.
 - (c) Define upion of two sets.
 - (d) Define equivalence relation.
 - (e) By using truth table, for two statements p and q in usual notations show that $p \lor (p \land q) = p$
 - (f) For all elements 'a' of Boolean Algebra show that a+1=1.
 - (g) Define degree of a vertex in graphs.
 - (h) What do you mean by proper colouring and chromatic number of a graph.
 - (i) Define rooted and binary trees.
 - (j) Define minimal spanning tree.

PART - II

- Find the coefficient of x* in the expression $\frac{1}{(x-3)(x-2)^2}$
- 3. If A and B are any two sets, then prove that : $(A \cup B)' = A' \cap B'$
- For any two statements p and q show that (p∧q) ⇒ (p∨q) is a tautology.
- 5. If in a graph G = (V, E) there are *n* vertices and *e* edges then prove that in the complementary graph G the number of vertices will be $\frac{n(n-1)}{2} e$.
- 6 Find the minimal spanning tree by Krushul's algorithm in the following graph:

PART - III

- 7. (a) Compute $(38)_{10} + (69)_{10} = ()_2$
 - (b) Compute $(11011)_2$ - $(10011)_2$ = $()_{12}$
 - (c) Use mathematical induction to prove that the sum of the first n odd positive integers is n².
 - (d) Using generating function find the solution of the recurrence relation.

$$a_r - 5a_{r-1} + 6a_{r-2} = 0, r \ge 2, a_0 = 6, a_1 = 30.$$

OR

- (a) Compute $(11001)_1 + (11101)_2 = (111$
- (b) Compute (46)_n-(146)_n=(),
- (c) Using mathematical induction method prove that:

$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}, (n \ge 1)$$

(d) Find the solution of the recurrence relation:

$$a_r = 3a_{r,1} + 2^r, r \ge 1, a_0 = 1.$$

- 8. (a) If A, B, C and D are any four sets, then prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
 - (b) If $f: Q \rightarrow Q$, f(x) = 2x and $g: Q \rightarrow Q$, g(x) = x + 2 then verify $(gof)^{-1} = f^{-1}og^{-1}$.

OR

- (c) For any three sets A, B and C, show that A-(B∪C)=(A-B)∩(A-C).
- (f) On the set of real numbers, a binary operation * is defined as a * b = a + b + ab, show that this binary operation is commutative and associative.
- 9. (a) If p and q are two statements, then by preparing truth table show that the compound statements $p \Leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent. https://www.uoronline.com
 - (b) What are the different methods of proving theorems. Prove that $\sqrt{2}$ is irrational number by giving a proof by contradiction.

OF

- (a) Prove that no Boolean algebra can have exactly three distinct elments.
- (b) If a, b, c are any three arbitrary elements of the Boolean algebra (B, +, .., ') such that a + b = a + c and a, b = a, c then prove that b = c.

10. (a) Find the incident matrix and adjacency matrix of the following graph:

(b) Find the shortest path and shortest distance from the vertices v_i to v₂ in the following weighted

(a) Find product $G_i \times G_i$ and composition $G_i[G_i]$ of the following two graphs G_i and G_i . Also write number of vertices and edges in the resulting graphs:

(b) Define isomorphic graphs. Show that the following two graphs G₁ and G₂ are isomorphic:

11. (a) What are the commonly used methods for tree traversal. Show that postorder traversals of the following two ordered rooted trees produce the same list of vertices:

.1:

(b) Find the minimal spanning tree from the following graph by Prim's method:

- (a) Define the following with example:
 - (i) Leaf of a tree
 - (ii) Tree traversal
 - (iii) Path length of a binary tree
 - (b) What is the ordered rooted tree that represents the expression $((a+b)^{\frac{1}{4}} 2) + ((a-4)^{\frac{1}{4}} 3)$. What is the value of the prefix expression + 235/1 234?