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All the parts of one question should be answered at one place in the answer-book. One complete
not be answered at different places in the answer-book.
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Attempt five questions in all, selecting one question from each unit.
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Write your roll number on question paper before start writing answer of questions.
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UNIT-1/%&T8 -1

Show that the path of a point P which possesses two constant velocities u and v, the first of
ection and the other is perpendicular to the radius OP drawn from a

question should

1. (a)
which is in a fixed dir

5 L u
fixed point O, is a conic whose focus is O and whose eccentricity 7"
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(b) A particle moves in a curve so that its tangential and normal acceleration are equal and the

ar velocities of the tangent is constant, Find the path.
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(a) ge unstretched length g

one end of an elastic string whose modulus of elasticity is A and whose U5 tied to a particle
L is tied to 8 fixed point on the smooth horizontal table and the other end 18

R . he extensio
of mass m which is lying.on the table. The particle is pulled to a distance where t n
of the string becomes b angd then let go, show that the period of one comP
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()  One end of a light elastic string of natural length I and modulus 2 mg is attached to a fixed
point O and the other end is attached with the particle of mass m held at rest at O is allowed
to fall. Show that the particle will reach O again after a time.
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lete oscillation is :
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UNIT - 11 /318 - 11
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3. (a)  Aparticle is moving vertically downwards from rest through a medium whose resistance varying
as the square of the velocity. Find the distance moved by the particle in time t,
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(b) A uniform elastic string has length a, when the tension is T, and a length a, when the tension

is Ty. Show that its natural length is (a,T, - a;To)/(T; ~T,) and the amount of workdone is
stretching it from the natural length to a length a +ayis:

()T — a,Ty)?
2(31 = 3.2)‘ (T] - Tg]
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(b)

(a)
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A heavy particle of weight W, attached to a fixed point by a light inextensible string, describe®
a circle in a vertical plane. The tension of the string has the values mW & nW respectivelyl
when the particle is at the highest and the lowest point of ite'patlt; siow that n=m +6.
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From a point on a plane, which is inclined at an angle B t the horizon, a particle is projected
with a velocity u at an angle « with the horizontal. Find the range up the inclined plane and
also the time of flight,
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UNIT - 111 / 3&18 - 111

4
A particle moves with a central acceleration p[r + 3—3) being projected from an apse at a
r 5

distance ‘a’ with a velocity 23\,/;. prove that it describes the curve r>(2 + cos\/3 6) = 3aZ .
4
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A particle moving with a central acceleration p/r? is projected with velocity V at a distance R.
Show that the path is a rectangular hyperbola if the angle of projection is :

Sin 4
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6. @  Find the moment of inertia of a uniform elliptic disc of sem! axes & and
the centre aﬁd.perpendic_ular to the disc. areh 3R <fFE W T ke kY
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®)  Find the product of inertia of a circular wire about its two pe
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rpendicular diameters.

UNIT -1V /¥&T - IV

7. (@  Awuniform rod AB of weight W is movable in a vertical plane about a
in equilibrium by a weight P attached to the string BCP passing ove
being vertical. If AC be equal to AB, show that :

P=W cos ACB.
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P=W cos ACB.

() Forces P, Q, R act along the sides BC, AC and BA respectively of an equilateral triangle ABC.
If their resultant is a force parallel of BC through the centroid of the triangle. Prove that

hinge at A and is sustained
r a smooth peg C, AC
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8. (@) A ladder whose C.G. divides it into two portions of length ‘a’ and ‘b’ rest with one end on a
rough horizontal floor and the other end against a rough vertical wall. If the coefficient of
friction at the floor and the wall be p and ' respectively, show that the inclination of the
ladder to the floor, when equilibrium is limiting is :
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(b)  Two rough particles connected by a Light string rest on an inclined plane. If their weig st
ate

corresponding coefficients of friction are Wy, W, and u,, p, respectively, show that gr¢
inclination of the plane for equilibrium is :

tan—l{ﬂlwl + P-zwz}
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UNIT - V/ &1 - V

9, (a) A square framework, formed of uniform heavy rods of equal weight W jointed together, 18
hung up by one corner. A weight W is suspended from each of the three Jower corners and the
shape of the square is preserved by a light rod along the horizontal diagonal. Find the thrust
of the light rod.
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(b)  Aregular hexagon is composed of six equal heavy rods freely jointed together, and two opposite
angles are connected by a string which is horizontal; one rod being in contact with a horizontal
plane, at the middle point of the opposite rod is placed a weight W,. If W be the weight of each

rod, show that the tension of string is (3W + W,)/V3. https://www.uoronline.com
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10. (a) A heavy uniform chain AB hangs freely, under gravity with the end A fixed and the other end
B attached by a light string BC to a fixed point C at the same level as A. The lengths of the
string and chain are guch that the ends of the chain at A and B make angles of 60° and 30°
respectively with the horizontal. Prove that the ratio of lengths of string and chain ig
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(®) I the length of 5 uniform chain suspended between points at the_aame le\’:n 9d. show that the
the tension at ¢he ponts of support is a minimum for that particular sp '
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